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1 Introduction

Conventional spectral methods impose rigid requirements on the computational grids used.

The grid points are the nodes of Gauss-like quadrature formulas (Gauss, Gauss Radau, or

Gauss Lobatto (GL) formulas). These nodes are denser at the boundaries than in the middle

of the domain. Although this property is suitable for boundary-layer problems, it may create

di�culties for other types of problems, particularly those with disparate length scales that

occur in multiple regions of the domain (e.g., di�usive burning or detonation and reacting

mixing layers). The principle reason for the degradation in performance on these disparate

problems is that the predetermined node points do not, in general, coincide with the features

that are being resolved. Extensive mappings can concentrate the node points into regions

more ideally suited for accurate resolution but present a serious limitation for complicated

problems. For this reason, spectral multidomain techniques have an obvious advantage for

complicated problems [1]{[3].

Another complication that conventional spectral methods have, is their implementation

in complex geometries. Meshes that are predetermined present a signi�cant constraint.

Flexible mesh distributions are easily extended to geometries that are not tensor products

of straight lines (to be shown in a later work).

Spectral methods that are not constrained to speci�c nodal points would clearly be

more 
exible than conventional spectral methods. Speci�cally, a distribution of points that

more closely approximates the disparate features in the domain could be adopted from

the outset. Subsequent adaptation to solution features in the domain need not rely on

smooth mappings. In addition, these \arbitrary-grid spectral techniques" could be used in

conjunction with multidomain ideas. We focus on formalizing these ideas within the context

of spectral techniques.

In this paper, we present some ideas for constructing spectral methods with arbitrary

grids. We demonstrate these ideas for a case of spectral solutions of hyperbolic equations;

however, these ideas can be applied to any partial di�erential equation. To illustrate the

basic idea, consider the following hyperbolic system of equations in conservation form:

@U

@t
=

@F (U)

@x
� 1 � x � 1 (1)

with arbitrary initial and boundary conditions. For spectral methods, a polynomial (in the

spatial variable x) of degree N , UN (x; t), and a projection operator IN are sought such that

IN

"
@UN

@t
�

@INF (UN)

@x

#
= 0 (2)

Of the spectral techniques, the most popular method is the Chebyshev collocation method,

in which INf(x) collocates f(x) at the Chebyshev GL points �j = cos(�j
N
). Note that we
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have here two projections; one involves the di�erentiation of F (UN), and the other involves

the way that the equation is satis�ed. Thus, the �rst application of the operator IN occurs

when we approximate
@F (U)
@x

by the derivative of the interpolation polynomial that interpo-

lates F (U) at the Chebyshev GL quadrature nodes. The second application of IN occurs

when we satisfy the approximate equation

"
@UN

@t
�

@INF (UN)

@x

#
= 0

at the Chebyshev GL points.

The basic premise for unstructured spectral methods is that equation (2) does not have to

be satis�ed in the same manner in which the operation @INF (UN )
@x

is carried out. In particular,

the derivative operation can be carried out by interpolation at any selected points; the

equation is satis�ed by either a Galerkin formulation or by a collocation method at a di�erent

set of points. Most importantly, the equation must be satis�ed correctly.

Mathematically speaking, we can replace equation (2) with

IN

"
@UN

@t
�

@JNF (UN)

@x

#
= 0 (3)

where IN 6= JN .

In reference [4], a particular case with this approach has been discussed. The operator

JN was de�ned by the Chebyshev collocation operator, and IN was the Legendre collocation

operator. In the constant-coe�cient case (F (U) = U), this method reduces to the Legendre

collocation method with an e�cient way of calculating the derivative by using Chebyshev

collocation points. We now generalize this notion to an arbitrary set of points, which enables

us to apply spectral methods in circumstances for which the grid points are not nodes of

some Gauss quadrature formula.

The method discussed in this paper is di�erent from using a transformation to redis-

tribute the grid points. The use of a transformation to redistribute the grid points involves

approximation of the solution by a polynomial in the transformed variable; as a result, the

approximation is not a polynomial in the original variable. Our method utilizes a polynomial

in the original variable. Moreover, the new method can be applied to totally unstructured

grids.

Finally, it should be noted that the new method has many similarities with spectral

elements, although the method of derivation is di�erent. For instance, Patera [5] or Korczak

et. al [1] used global polynomials (Lagrangian interpolants), passed through the Chebyshev

collocation points, to obtain spectral elements. However, their work was not generalized to

arbitrary grids.
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2 The Di�erentiation Matrix for Unstructured Grids

Consider the set of points (x0 = 1; x1; x2; :::; xN�1; xN = �1), where the points x1; x2; :::; xN�1

are arbitrary. Let f(x) be a function de�ned everywhere in [�1; 1]. The interpolation

polynomial fN (x) that collocates f(x) at the points xj is given by

fN(x) = JNf =
NX
j=0

f(xj)Lj(x) (4)

where the Lagrange polynomials Lj(x) are de�ned by

L(x) = (x� x1)(x� x2):::(x� xN�2)(x� xN�1) (5)

Lj(x) =
(1 � x2)L(x)

(1 � x2
j
)(x� xj)L

0

(xj)
1 � j � N � 1 (6)

L0(x) =
(1 + x)L(x)

2L(1)
(7)

LN (x) =
(1 � x)L(x)

2L(�1)
(8)

The Lagrange polynomial evaluated at the discrete points xk for k 6= j, is equal to 0;

Lj(xk) = �j;k .

We use
dJN f(x)

dx
as the approximation to

df(x)
dx

. Note that dfN

dx
has two alternative repre-

sentations; the �rst is obtained by di�erentiating (4) as

dfN (x)

dx
=

NX
j=0

f(xj)L
0

j
(x) (9)

The second representation stems from the fact that dJN f(x)
dx

is a polynomial of degree N � 1;

therefore,

dfN (x)

dx
=

NX
j=0

f
0

N
(xj)Lj(x) (10)

Equations (9) and (10) are used to relate the grid-point values of the derivative f
0

N
(xj)

to those of the function. The most obvious way is to equate the expressions in (9) and (10)

at the grid points xk (0 � k � N) to obtain:

f
0

N
(xk) =

NX
j=0

L
0

j
(xk)f(xj) (11)

To rewrite expression (11) in matrix form, we �rst denote

~f
0

= [f
0

N
(x0); :::; f

0

N
(xN )]

T ; ~f = [f(x0); :::; f(xN)]
T
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which yields

~f
0

= D~f (12)

where the di�erentiation matrix D is given by

D = (dj;k) =
h
L

0

k
(xj)

i
(13)

Another method for expressing the equivalency between (9) and (10) is to state that the

di�erence between these expressions (which is identically 0) is orthogonal to all polynomials

of degree � N :

Z 1

�1

NX
j=0

h
f(xj)L

0

j
(x)� f

0

N
(xj)Lj(x)

i
Lk(x)dx = 0 0 � k � N (14)

The system of equations that follows from (14) can be rewritten as

NX
j=0

mk;jf
0

N
(xj) =

NX
j=0

sk;jf(xj) 0 � k � N (15)

where

mk;j =

Z 1

�1
Lj(x)Lk(x)dx (16)

and

sk;j =

Z 1

�1
L

0

j
(x)Lk(x)dx (17)

In the matrix form, equation (15) becomes

M~f
0

= S~f (18)

where

M = (mk;j) 0 � j; k � N (19)

and

S = (sk;j) 0 � j; k � N (20)

Equations (14) and (11) are di�erent manifestations of the same fact: (9) and (10) are

equivalent. Therefore, the di�erentiation matrices derived from (14) must be the same as

the matrix derived from (11) (with the assumption that M is invertible):

D =M�1S (21)
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To prove this directly, we show that

MD = S (22)

By writing the (i; k) term on the left-hand side of (22), we obtain

(MD)
i;k

=
NX
j=0

mi;jdj;k

If we substitute (13) and (16) into (2), then we get

(MD)
i;k

=

Z 1

�1
Li(x)

2
4 NX
j=0

Lj(x)L
0

k
(xj)

3
5

We now use the fact that every polynomial of degree N is identical with its N-degree inter-

polation polynomial. Thus, because L
0

k
(x) is a polynomial of degree N � 1 and

NX
j=0

L
0

k
(xj)Lj(x)

is its interpolant at the points xj (0 � j � N) then

NX
j=0

Lj(x)L
0

k
(xj) = L

0

k
(x)

which yields

(MD)
i;k

=
Z 1

�1
Li(x)L

0

k
(x) = si;k

(which is apparent from (17)). This establishes expression (22).

2

Thus, we have de�ned a new method, based on the arbitrary distribution of points, to

approximate the derivative of a function. The attractive features of the representation (21)

of the di�erentiation matrix are summarized in lemma 3.1 and lemma 3.2:

Lemma 3.1:

The matrix M de�ned in (16) is a symmetric positive-de�nite matrix.

5



Proof:

The fact that M is symmetric follows immediately from the de�nition (16). In fact,

mk;j =
Z 1

�1
Lj(x)Lk(x)dx = mj;k

We must show that M is positive de�nite. Let ~V be an N + 1 component vector:

~V = (vo; :::; vN)

Then,

~V TM~V =
NX
i=0

NX
j=0

mi;jvivj

Recall the de�nition of mi;j from (16). We get

~V TM~V =

Z 1

�1

NX
i=0

viLi(x)
NX
j=0

vjLj(x)dx � 0 (23)

Clearly, the equality sign holds only if ~V is the null vector.

2

Equation (23) can be interpreted in a di�erent way. Let v(x) be the polynomial of degree

N de�ned by

v(xj) = vj 0 � j � N

so that

v(x) =
NX
j=0

vjLj(x)

Then, (23) can be rewritten as

~V TM~V =

Z 1

�1
v(x)2dx (24)

Thus, every vector ~V can be identi�ed with a polynomial v(x) that takes the values of its

components at the grid points xj. The vector space norm

~V TM~V

is equivalent to the function space normZ 1

�1
v(x)2dx

Next, we will consider the properties of the matrix S.
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Lemma 3.2:

Let S be de�ned in (17), and let ~V be de�ned as before. Then,

~V TS~V =
1

2
(v20 � v2

N
) (25)

Proof:

We start by showing that S is almost antisymmetric. >From the de�nition (17)

sk;j =
Z 1

�1
L

0

j
(x)Lk(x)dx

and integration by parts, we get

sk;j = Lj(1)Lk(1)� Lj(�1)Lk(�1)� sj;k

We now use the de�nition of the Lagrange polynomials (6){(8) and note that the bound-

ary terms vanish for 0 6= j; k 6= N to yield

sk;j + sj;k = �k;0�j;0 � �k;N�j;N

Thus,

~V TS~V =
NX
k=0

NX
j=0

vjvksk;j

=
1

2

NX
k=0

NX
j=0

vjvk(sk;j + sj;k)

=
1

2

NX
k=0

NX
j=0

vjvk(�k;0�j;0 � �k;N�j;N)

=
1

2
(v20 � v2

N
)

which completes the proof of (25).

2
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As before, equation (25) has a natural interpretation in the polynomial space. Let v(x)

be the polynomial of degree N such that v(xj) = vj. Then,

~V TS~V =
NX
k=0

NX
j=0

vjvksk;j

=
NX
k=0

NX
j=0

vjvk

Z 1

�1
Lk(x)L

0

j
(x)dx

=

Z 1

�1
v(x)v

0

(x)dx

=
1

2
[v2(1)� v2(�1)]

Note that

v(1) = v0; v(�1) = vN

Thus, (25) is an integration-by-parts formula.

The last issue that we will discuss in this section is the relationship between di�erentiation

matrices, based on di�erent grid-point distributions. Consider two grids xj and yj (j =

0; :::; N). Let the Lagrange polynomial Lx

j
(x) be de�ned as in (6){(8), and let L

y

j
(x) be

de�ned in a similar way, based on the set of points yj. This de�nes two di�erentiation

matrices (see (11)):

Dx = (dx
j;k
) =

h
(Lx

k
)

0

(xj)
i

(26)

and

Dy = (dy
j;k
) =

h
(Ly

k
)

0

(yj)
i

(27)

We now show that the two matrices are similar.

Theorem 3.1:

De�ne the matrix T by

T = (tij) =
h
Lx

j
(yi)

i
(28)

Then de�ne

(T�1)ij =
h
Ly

j
(xi)

i
(29)

and

Dy = TDxT
�1 (30)
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Proof:

1. Because L
y

k
is a polynomial of degree N ,

NX
j=0

Lx

j
(x)L

y

k
(xj) = L

y

k
(x)

If we substitute x = ym, then we get

NX
j=0

Lx

j
(ym)L

y

k
(xj) = L

y

k
(ym) = �k;m

which proves 1.

2. Again, the Lagrange polynomials, based on the grid points yj, are polynomials of degree

N ; therefore, their derivative can be represented as

(Ly

i
)0(x) =

NX
j=0

Ly

i
(xj)(L

x

j
)0(x) (31)

By the same token,

(Lx

j
)0(x) =

NX
l=0

(Lx

j
)0(xl)L

x

l
(x) (32)

Now, we substitute x = ym in (31) and (32) to get

(Ly

i
)0(ym) =

NX
j=0

NX
l=0

Ly

i
(xj)(L

x

j
)0(xl)L

x

l
(ym) (33)

The left-hand side is the (m; i) element of Dy, whereas the right-hand side is the (m; i)

element of T�1DxT ; thus, (30) has been proved.

2

3 The Legendre Galerkin Method Based on Arbi-

trary Grids

Consider now the linear form of (1):

Ut(x; t) = Ux(x; t) � 1 � x � 1 (34)

U(x; 0) = f(x) (35)

U(1; t) = g(t) (36)
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We introduce a new method for the discretization of (34), based on the di�erentiation

matrix introduced in the last section. Note that the di�erentiation matrix uses the arbitrary

grid xj. With the new method, we seek a vector

~u = [u0(t); :::; uN(t)]
T

that satis�es

M
d~u

dt
= S~u� �~e0[u0 � g(t)] (37)

where

~e0 = (1; 0; 0; :::0)T

The discussion on imposing the initial condition is deferred until later in the paper because

of subtle issues that involve convergence. Here, we generally will not use

uj(0) = f(xj) 0 � j � N

unless the grid points xj have special properties.

The structure of the matricesM and S, indicated in (34) and (37), leads immediately to

the following stability result:

Theorem 4.1:

The method described in (37) is stable for � � 1
2 .

Proof:

We multiply (37) by ~uT to get

~uTM
d~u

dt
= ~uTS~u� �~uT~e0[u0 � g(t)]

(38)

We use the symmetry property for M and the almost skew symmetric property (25) for

S to obtain

1

2

d

dt
~uTM~u =

1

2
(u20 � u2

N
)� �u0[u0 � g(t)] (39)

For stability, we consider the case g(t) = 0; from this case we can clearly determine that

if � � 1
2, then

1

2

d

dt
~uTM~u � 0 (40)

and stability exists in the norm induced by the positive-de�nite matrixM.

10



2

The stability result (39) can be represented in a di�erent way in view of the equivalency

between vectors and polynomials established in (24). Speci�cally, let uN (x; t) be an Nth-

degree polynomial such that

uN(xj; t) = uj(t) 0 � j � N

Then, from (24) we see that

1

2

d

dt

Z 1

�1
uN (x; t)

2dx =
1

2

d

dt
~uTM~u

=
1

2
(u20 � u2

N
)� �u20

=
1

2
[uN(1; t)

2 � uN (�1; t)
2]� �uN(1; t)

2

Thus, for the polynomial uN(x; t) we have stability in the usual L2 norm.

Now, we examine equation (37) from yet another point of view. By, multiplying (37) by

M�1, we get

d~u

dt
= M�1S~u� �M�1~e0[u0 � g(t)] (41)

or in view of (21), we obtain

d~u

dt
= D~u � �M�1~e0[u0 � g(t)]: (42)

The expression M�1~e0 can be evaluated explicitly.

Theorem 4.2:

Let M be the mass matrix de�ned in (16). De�ne the residual vector ~r by

M�1~e0 = ~r = (ro; :::; rN)
T

Then,

rj =
P

0

N+1(xj) + P
0

N
(xj)

2
(43)

where PN (x) is the Legendre polynomial of order N .
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Proof:

We must verify that if ~r satis�es (43), then the expression

M~r = ~e0

is also satis�ed. Substituting (16) into expression (3) yields

(M~r)
i

=
NX
j=0

mi;jrj

=
Z 1

�1
Li(x)

NX
j=0

Lj(x)rjdx (44)

Substituting expression (43) into (44) yields

(M~r)
i

=

Z 1

�1
Li(x)

NX
j=0

Lj(x)

"
P

0

N+1(xj) + P
0

N
(xj)

2

#
dx (45)

Because P 0

N+1 and P 0

N
are polynomials of degree � N , they coincide with their Nth-

degree interpolation polynomials; therefore,

NX
j=0

Lj(x)

"
P

0

N+1(xj) + P
0

N
(xj)

2

#
=

"
P

0

N+1(x) + P
0

N
(x)

2

#

so that

(M~r)
i

=
Z 1

�1
Li(x)

"
P

0

N+1(x) + P
0

N
(x)

2

#
dx

= Li(1)

"
PN+1(1) + PN (1)

2

#
� Li(�1)

"
PN+1(�1) + PN (�1)

2

#

�
Z 1

�1
L

0

i
(x)

"
PN+1(x) + PN (x)

2

#
dx

Recall that

PN (1) = 1; PN (�1) = (�1)N

and that PN and PN+1 are orthogonal to all polynomials of degree < N ; the last two terms

in the right-hand side of (46) vanish, and we are left with

(M~r)
i
= Li(1) = �i;0

which proves theorem 4.2.

2
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Theorem 4.2 sheds a new light on the connection between the method de�ned in (37)

that uses the arbitrary set of grid points xj and the Legendre Galerkin method. They are

the same method.

Theorem 4.3:

The method de�ned in (37) is equivalent to the Legendre Galerkin method.

Proof:

De�ne

uN(x; t) =
NX
j=0

uj(t)Lj(x)

where uj(t) are the elements of ~u de�ned in (37). Then, uN(x; t) satis�es the error equation

@uN(x; t)

@t
=

@uN(x; t)

@x
� �

"
P 0

N+1(x) + P 0

N
(x)

2

#
[UN (1; t)� g(t)] (46)

The error equation is satis�ed because both sides of expression (46) are polynomials of degree

N . The two sides agree at N + 1 points xj (j = 0; :::; N) by virtue of (37), which indicates

that they are equivalent. Because the right-hand side is orthogonal to all polynomials of

degree N that vanish on the boundary x = 1, this error equation is the same equation that

is satis�ed by the Legendre Galerkin method [6].

2

As equation (46) demonstrates, the precise method for imposing the boundary conditions

a�ects the overall behavior of the method. Section 3 shows that two di�erentiation operators

de�ned on di�erent grids are similar and, thus, have the same eigenvalues. We now show

that the modi�ed di�erentiation matrix also has this property. Equation (42) produces a

modi�ed di�erentiation matrix (i.e., a di�erentiation matrix that takes into account the

boundary conditions):

D � �R

where the boundary matrix R is de�ned as

Ri;j = ri�j;0 (47)

.

13



Suppose now that we have two grids xj, yj (j = 0; :::; N). We have shown in theorem 2.3

that Dx and Dy are similar:

Dy = TDxT
�1

where the matrices T and T�1 are de�ned in (28) and (29). We show now that the same

similarity transformation exists for the modi�ed di�erentiation matrices. That is,

Dy � �Ry = T (Dx � �Rx)T
�1 (48)

or (with theorem 3.1)

Ry = TRxT
�1

Consider element (i; j) of the right-hand side:

�
TRxT

�1
�
i;j

=
NX
l=0

NX
m=0

Ti;l(Rx)l;mT
�1
m;j

=
NX
l=0

NX
m=0

Lx

l
(yi)rl�0;mL

y

j
(xm)

We recall that

rl =

"
P 0

N+1(xl) + P 0

N
(xl)

2

#
= RN (xl)

where RN (x) is a polynomial of degree N and is, therefore, equal to its interpolant. Thus,�
TRxT

�1
�
i;j

= RN (yi)L
y

j
(x0) = RN (yi)�j;0

which proves that the similarity transformation is valid even for the modi�ed derivative

matrix.

The Legendre Galerkin method de�ned by equation (37) is stable; therefore, the initial

error is not ampli�ed. However, the e�ects of initial conditions must be carefully taken into

account. We know that polynomials based on arbitrary grid distributions may generally be

nonconvergent (the Runge phenomenon).

The initial error can be decreased with the number of mesh points N by constructing the

Chebyshev interpolation as an initial condition. Thus, let

�j = cos(
�j

N
) 0 � j � N (49)

L�(x) = (1� x2)T 0
N
(x) (50)

L
�

j
(x) =

L�(x)

(x� �j)(L�)0(�j)
(51)

The Chebyshev approximation for the initial condition is, then,

CNf(x) =
NX
j=0

f(�j)L
�

j
(x) (52)
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so that the recommended initial approximation will be

f(xj) �
NX
j=0

f(�j)L
�

j
(xj)

This approximation will provide a convergent approximation for the initial condition. Of

course, the Chebyshev approximation is not the only possibility; any other spectral or pseu-

dospectral approximation would do as well.

We now brie
y discuss the issue of implementation. Two methods are available for

implementing the arbitrary-grid spectral methods. The �rst method is to form the matrices

M and S by carrying out explicitly the integrations in (16) and (17). (This technique is

utilized in the two examples presented later in the text.) This procedure is done once and

for all for every given set of grid points. Then, the equations are solved as described in

(37). A more convenient method that does not involve evaluating integrals is to use the

di�erentiation matrix D de�ned in (13) and solve the system (42) with the identity

M�1~e0 =
P

0

N+1(xj) + P
0

N
(xj)

2

proven in theorem 4.2. For a large N , the method that will be the most successful is the one

with the least sensitivity to round-o� errors. This point has not been fully investigated at

this time.

Finally, an observation in regard to the maximum allowable time step for the arbitrary-

grid spectral schemes. All spatial operators have the same eigenvalues, regardless of the

spatial distribution of points (48). Therefore, the maximum allowable time step is the

same for all schemes. Stability is a matrix property, and depends on all the points in

the distribution. This observation is somewhat counter to the conventional �nite-di�erence

notion, in which the maximum time step is governed by the smallest grid spacing.

4 The Legendre Collocation for Unstructured Grids

The Legendre collocation for unstructured grids involves the approximation of the integrals

in (16) and (17) by the Gauss-Lobatto-Legendre (GLL) quadrature formula. Let (�0 =

1; �1; :::; �N�1; �N = �1) be the nodes of the GLL quadrature formula and !l, 0 � l � N be

the weights. We de�ne a new mass matrix Mc by

Mc(i; j) =
NX
l=0

Lj(�l)Lk(�l)!l (53)

where the Lj(x) are the Lagrange polynomials at the points (x0 = 1; x1; x2; :::; xN�1; xN =

�1). Note that this is an arbitrary set of grid points.
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The matrixMc may be di�erent fromM because the GLL formula is exact to order 2N�1

and Lj(x)Lk(x) is a polynomial of order 2N . The matrix Mc is, however, a symmetric and

positive-de�nite matrix.

By introducing quadrature to equation (17), we de�ne a new sti�ness matrix Sc as

Sc(i; j) =
NX
l=0

L
0

j
(�l)Lk(�l)!l (54)

Note that because of the exactness of the GLL formula, the sum on the right-hand side of

(54) is the same as the integral in the right-hand side of (17); therefore,

Sc = S

For this reason, the property (25) is true for the sti�ness matrix Sc also.

The uniqueness of the di�erentiation matrix D also yields

M�1
c
Sc =M�1S

which does not contradict the fact that

Mc 6=M

because the matrices Sc and S are singular.

In the Legendre collocation method of (34) with arbitrary grids, we seek a vector

~u = [u0(t); :::; uN(t)]
T

that satis�es

Mc

d~u

dt
= Sc~u� �~e0[u0 � g(t)] (55)

where

~e0 = (1; 0; 0; :::0)T

Alternatively,

d~u

dt
= D~u � �M�1

c
~e0[u0 � g(t)] (56)

The stability of (55) follows immediately from the fact that Mc is symmetric positive

de�nite and Sc satis�es (25). Our aim is to show that (55) is equivalent to the usual Legendre

collocation method.
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Theorem 4.1:

Let Mc be the mass matrix de�ned in (53). We de�ne the residual vector ~r by

M�1
c
~e0 = ~r = (ro; :::; rN)

T

Then,

rj = P
0

N
(xj)(1 + xj)

1

2N2
(57)

where PN (x) is the Legendre polynomial of order N .

Proof:

We start by noting that the nodes �l of the GLL formula are the zeroes of the polynomial

P
0

N
(x)(1� x2)

Also, because P
0

N
(1 + x) is a polynomial of degree N ,

NX
j=0

Lj(x)P
0

N
(xj)(1 + xj) = P

0

N
(x)(1 + x)

Therefore,

2N2 (Mc~r)i =
NX
j=0

Mc(i; j)P
0

N
(xj)(1 + xj)

=
NX
j=0

NX
l=0

Lj(�l)Li(�l)P
0

N
(xj)(1 + xj)!l

=
NX
l=0

Li(�l)P
0

N
(�l)(1 + �l)!l

= 2N2�0;i

which proves the theorem.

2

Equation (56) also can be viewed as shown in the following example. We seek a polyno-

mial (in x) uN (x; t) of the form

uN(x; t) =
NX
j=0

uN(xj; t)Lj(x) (58)
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such that

duN (xk; t)

dt
=

NX
j=0

uN(xj; t)L
0

j
(xk)� �RN(xk)[uN(1; t)� g(t)] (59)

where

RN(x) = (1 + x)P
0

N
(x)

This approach is equivalent to the Legendre Collocation Method [6].

The extension of the arbitrary-grid Legendre collocation method from the linear case (34)

to the solution of the nonlinear case (1) is immediate. The issue of implementation could be

signi�cant. To avoid computing the points �l, the best choice is to use the formulation (56)

rather than (55). In this case, Mc and Sc do not need to be computed.

At this stage, note that for the case

RN(x) = PN (x)

we have the Legendre Tau method, with the additional property of an improved time step.

However, we do not have the representation of the Legendre Tau method in the form of (55).

5 Unstructured Grids for Unbounded Domains: La-

guerre Methods

Consider the equation

@U

@t
= �

@U

@x
0 � x <1 (60)

U(0; t) = g(t) (61)

U(x; 0) = h(x)

Note that the domain is semibounded. Note also that if g(t) = 0, then

d

dt

Z
1

0
e�xU2(x; t)dx = �

Z
1

0
e�xU2(x; t)dx (62)

Assume that we have an arbitrary set of grid points

(x0 = 0; x1; :::; xN)

In the Galerkin procedure, we approximate the derivative of a function f(x) whose values

at xj are given by the derivative of its interpolant fN (x). After we de�ne

L(x) = (x� x0):::(x� xN) (63)
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we de�ne the Lagrange polynomials by

Lj(x) =
L(x)

(x� xj)L
0(xj)

(64)

The derivative of the interpolant fN (x) has two equivalent expressions:

dfN (x)

dx
=

NX
j=0

f(xj)
dLj(x)

dx
(65)

and

dfN (x)

dx
=

NX
j=0

f
0

N
(xj)Lj(x) (66)

In the Galerkin Laguerre method, we express the equivalency between the expressions by

Z
1

0
e�x

NX
j=0

"
f(xj)

dLj(x)

dx
� f

0

N
(xj)Lj(x)

#
Lk(x)dx = 0 0 � k � N (67)

Equation (67) de�nes the di�erentiation matrix D. In fact, if we de�ne

mk;j = (Lj; Lk) (68)

and

sk;j = (L
0

j
; Lk) (69)

where the scalar product (u; v) is de�ned as

(u; v) =
Z
1

0
e�xu(x)v(x)dx

then we get

D =M�1S

As before, the di�erentiation matrix is unique. The manner in which the matricesM and S

are constructed leads immediately to the following lemma.

Lemma 6.1:

The matrix M is symmetric positive de�nite. The matrix S satis�es

S + ST = M� diagonal(1; 0; 0; :::; 0) (70)
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Proof:

>From the de�nition of the matrix S, we have

sk;j = (L
0

j
; Lk)

=
Z
1

0
e�xL

0

j
(x)Lk(x)dx

= �Lj(0)Lk(0)�

Z
1

0
e�xLj(x)L

0

k
(x)dx

+

Z
1

0
e�xLj(x)Lk(x)dx

By using the de�nition of the matrixM and the properties of the Lagrange polynomials, we

get

sk;j = ��i;0�j;0 � sj;k +mk;j (71)

which proves (70).

2

To discretize (60), we introduce the unknown vector

~u = [u0(t); :::; uN(t)]
T

that satis�es

M
d~u

dt
= �S~u� �~e0[u0 � g(t)] (72)

The stability is immediate, as shown in the following lemma.

Lemma 6.2:

Let ~u satisfy (72), with g(t) = 0. Then, we have the energy estimate

d

dt
~uTM~u = �~uTM~u� (2� � 1)u20 (73)

Proof:

Equation (73) follows immediately from multiplying (72) by ~uT and using (70).

2
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Lemma 6.1 implies that the method is stable, provided that � � 1
2
. Note that the energy

estimate (73) for the approximation is nearly the same as for the di�erential equation (64).

We still must show that the method described in (72) is equivalent to the Laguerre

Galerkin method. We begin by rewriting (72) as

d~u

dt
= �M�1S~u� �M�1~e0[u0 � g(t)] (74)

The key issue is to identify the vector

M�1~e0

which is done in the following theorem.

Theorem 6.1:

Let M be the mass matrix de�ned in (68). De�ne the residual vector ~r by

M�1~e0 = ~r = (ro; :::; rN)
T

Then

rj =
d

dx
L
(0)
N+1jx=xj

(75)

where L
(0)
N

is the Laguerre polynomial of order N .

Proof:

We must verify that ~r satis�es (75) and that

M~r = ~e0

We begin by expanding (M~r) as

(M~r)
i

=
NX
j=0

mi;jrj

=

Z
1

0
e�xLi(x)

NX
j=0

Lj(x)rjdx (76)

If we substitute (75) into (76 ), then we get

(M~r)
i

=

Z
1

0
e�xLi(x)

NX
j=0

Lj(x)

"
d

dx
L
(0)
N+1jx=xj

#
dx (77)
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Because d

dx
L
(0)
N+1 is a polynomial of order N , it coincides with its interpolant; therefore,

NX
j=0

Lj(x)

"
d

dx
L
(0)
N+1jx=xj

#
=

d

dx
L
(0)
N+1(x)

Thus,

(M~r)
i
=

Z
1

0
e�xLi(x)

d

dx
L
(0)
N+1(x)dx

If we integrate the right-hand side by parts, we get

(M~r)
i
= �Li(0)L

(0)
N+1(0) +

Z
1

0
e�xLi(x)L

(0)
N+1(x)dx�

Z
1

0
e�xL

0

i
(x)L

(0)
N+1(x)dx

The last two terms on the right vanish because of the orthogonality of L(0), and the �rst

term vanishes if i 6= 0; thus,

(M~r)
i
= ��i;0

and the theorem is proven.

2

Another method for getting the Lageurre method on the grid xj is to seek a polynomial

uN(x; t) such that

duN (xk; t)

dt
=

NX
j=0

L
0

j
(xk)uN(xj; t)� �L0

N
(xk)[uN(x0; t)� g(t)] (78)

where (LG)N (x) is the Nth-degree Laguerre polynomial. This approach is the Laguerre

collocation method.

6 Numerical Results

We now test the previous theoretical results with two numerical examples. The linear equa-

tions (34){(36) are solved with f(x) = sin(�x), g(t) = sin[�(1 + t)], and the exact solution

U(x; t) = sin[�(x+ t)]. A variety of grids, from Chebyshev to \randomly generated" grids,

are used to test the accuracy and stability of the method. For all calculations, 128-bit

arithmetic is used to ensure adequate precision.
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Figure 1 shows the re�nement study on �ve di�erent grids:

1. Uniform grid xj =
2j�N
N

(j = 0; :::; N)

2. Chebyshev grid xj = cos(�j
N
)

3. A linear combination of the uniform grid and Chebyshev grid (i.e, xj = 0:52j�N
N

+

0:5 cos(�j
N
))

4. Chebyshev2 (i.e., xj = cos2(�j
N
))

5. (Chebyshev)
2
for �1 � x � 0 and (Chebyshev)

1

2 for 0 � x � 1, where

(Chebyshev)
1

2 is de�ned by the grid points xj = cos
1

2 (�j
N
).

The log10 of the L2 error, plotted against the number of points in the approximating

polynomials is shown in Figure 1. The problems are run to the physical time T = 2. The

convergence is exponential for all cases until machine round o� is encountered. These results

are consistent with the previous numerical results. (Note that the Chebyshev grid is the

least sensitive to round o�.)

The Legendre Galerkin method de�ned by equation (37) is stable; therefore, the initial

error is not ampli�ed. However, the e�ects of initial conditions must be carefully taken

into account. We know that polynomials based on arbitrary grid distributions generally

may be nonconvergent. This property, called the Runge phenomena, is easily demonstrated

by approximating the function f(x) = 1
1+(5x)2

(�1 � x � 1) on a uniform grid. The

global approximating polynomials oscillate wildly at each end of the domain, which yields

a poor approximation in those regions. The Runge phenomena is alleviated by using a grid

distribution (like the Chebyshev grid distribution), which clusters points near the boundaries

�1 and 1.

Figure 2 illustrates that a Runge-like phenomena exists within the arbitrary-grid spectral

methods if special precautions are not taken in the initialization step. In this problem, the

linear equations (34){(36) are solved with f(x) = 1
1+[5(x)]2

, g(t) = 1
1+[5(1+t)]2

, and the exact

solution U(x; t) = 1
1+[5(x+t)]2 . The simulation is run to time T = 0:001 (a physical time that

occurs well before the in
uence of the initialization is lost.) (Running to a physical time

T � 2 yields exponential convergence on all grids.) Convergence is achieved only for the

Chebyshev grid distribution.

The source of the error in this problem is the failure of the arbitrary grid that approx-

imates the polynomial to converge to the initial condition. For small times (less than 1

convective sweep), erroneous information is left in the domain, and the resulting method is

nonconvergent. By changing the problem slightly, however, convergence can be recovered on

all grids.
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To initialize the problem, we must construct an approximation to the initial condition

f(x), based on the grid points xj (0 � j � N). We want to keep the 
exibility and rigid

structure of the original grid distribution; however, the interpolation polynomial, based on

the grid points xj, generally is not convergent. Therefore, we use the method outlined in

(49) and (52). With this initialization, spectral convergence is recovered.

7 Conclusions

A new technique for implementing spectral methods for hyperbolic equations has been devel-

oped that does not require grid points that are nodes of some Gauss quadrature formula. For

this reason, this method is referred to as an arbitrary-grid spectral method. Both Galerkin

and collocation formulations are presented for the conventional Legendre method, and a

Galerkin formulation is presented for the conventional Laguerre method.

The basis for the stability of the unstructured spectral schemes relies on a weighted

energy norm in all cases. Stability is proven for the constant coe�cient hyperbolic system.

All unstructured spectral methods utilize a \weak" imposition of the boundary condition,

similar to the technique used in the penalty formulations of the �nite element method. With

this imposition, the complete di�erentiation matrix, including boundary conditions, is similar

to (i.e., it has the same eigenvalues) the conventional di�erentiation operator; therefore, this

matrix behaves similarly.

The new formulations are demonstrated on two scalar hyperbolic problems. The arbitrary-

grid Legendre Galerkin method is used in both cases. Exponential accuracy is shown in both

cases on arbitrary grids. Care must be exercised in the initialization procedure to ensure

convergence of the new schemes.
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FIGURE 1. Convergence of the arbitrary grid Legendre Galerkin method on various grids.

FIGURE 2. Divergence of the arbitrary grid Legendre Galerkin method for improperly

imposed initial conditions.
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